Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Toxicon ; 243: 107714, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626820

RESUMO

The present work is carried out to protein isolation, purification, and characterization from leaves, stem, and seed of C. procera and to evaluate the larvicidal potential on Anopheles stephensi. The whole protein was isolated using protein extraction buffer and precipitated by ammonium sulphate and larvicidal active protein was purified by the column chromatography. The homogeneity of larvicidal protein was confirmed by the SDS-PAGE. The identification of protein was done by the HPLC and LC-MS/ESI-MS. The crude protein from leaves showed 100% mortality of 3rd instar larvae of An. stephensi at the concentration of 5.5 mg/ml after 24 h of exposure. The crude protein from stem showed 25% mortality and no mortality observed was observed in seed protein. The leaves crude protein was further purified by ion exchange chromatography and eluted fractions were tested for larvicidal potential. The purified single protein fractions L2 and L3 from C. procera leaves showed 100% mortality at concentration of 0.06 mg/ml. The homogeneity of purified protein was confirmed by SDS-PAGE and two bands of 26 kDa and 15 kDa protein were observed. The peptide sequence "R.SQMLENSFLIENVMKR.L" was identified in the trypsin digested homogenous protein fraction L2 and "R.DRGSQKR.N" peptide sequence in L3 fraction by LC-MS/ESI-MS. The CprL2 peptide showed the sequence similarity with the protein maturase K and CprL3 peptide showed the sequence similarity with ribosomal protein L20 of C. procera. The conserved functional domain was also identified in both the CprL2 and CprL3 peptide. The identified proteins showed strong larvicidal efficacy at very low concentration. The identified proteins are novel and natural larvicidal agents against An. stephensi and hence can be used to control the malaria.

2.
Nat Prod Res ; : 1-7, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343284

RESUMO

Mosquitoes of the Aedes genus are responsible for transmitting many vector-borne viral diseases worldwide. Hundreds of thousands of people die annually from vector-borne diseases, including West Nile fever, dengue, tick-borne diseases, yellow fever, chikungunya, Rift Valley fever, and Zika. Billions of people are at the risk of infection on all continents, which is a cause of international concern. Therefore, new vector-control methods are essential for mitigating these illnesses. The bioactive hydrocarbons isolated from Xylopia langsdorfiana St. Hilaire & Tulasne are trachylobanes, a rare class of diterpenes found in the n-hexane fraction of the stem and leaf ethanolic extracts. These were tested against Ae. aegypti fourth-instar larvae over 48 h of exposure, with LC50 values ranging from 19.84 to 72.9 µg/mL, comparable to that of the positive control. The findings highlight the potential of Xylopia langsdorfiana St. Hilaire & Tulasne metabolites for controlling the main vectors of arthropod-borne viruses.

3.
Exp Parasitol ; 256: 108651, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944660

RESUMO

Infectious diseases such as malaria, dengue, and yellow fever are predominantly transmitted by insect vectors like Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus in tropical regions like India and Africa. In this study, we assessed the larvicidal activity of commonly found seaweeds, including Padina gymnospora, P. pavonica, Gracilaria crassa, Amphiroa fragilissima, and Spatoglossum marginatum, against these mosquito vectors. Our findings indicate that extracts from P. gymnospora Ethyl Acetate (PgEA), P. pavonica Hexane (PpH), and A. fragilissima Ethyl Acetate (AfEA) displayed the highest larval mortality rates for A. stephensi, with LC50 values of 10.51, 12.43, and 6.43 µg/mL, respectively. Additionally, the PgEA extract from P. gymnospora exhibited the highest mortality rate for A. aegypti, with an LC50 of 27.0 µg/mL, while the PgH extract from the same seaweed showed the highest mortality rate for C. quinquefasciatus, with an LC50 of 9.26 µg/mL. Phytochemical analysis of the seaweed extracts revealed the presence of 71 compounds in the solvent extracts. Fourier-transform infrared spectra of the selected seaweeds indicated the presence of functional groups such as alkanes, alcohols, and phenols. Gas chromatography-mass spectrometry analysis of the seaweeds identified major compounds, including hexadecanoic acid in PgEA, tetradecene (e)- in PpEA, octadecanoic acid in GcEA, and 7-hexadecene, (z)-, and trans-7-pentadecene in SmEA.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Alga Marinha , Animais , Inseticidas/análise , Larva , Alga Marinha/química , Rodófitas/química
4.
Exp Parasitol ; 251: 108569, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37330107

RESUMO

Malaria is transmitted by infected female Anopheles mosquitoes, and An. arabiensis is a main malaria vector in arid African countries. Like other anophelines, its life cycle comprises of three aquatic stages; egg, larva, and pupa, followed by a free flying adult stage. Current vector control interventions using synthetic insecticides target these stages using adulticides or less commonly, larvicides. With escalating insecticide resistance against almost all conventional insecticides, identification of agents that simultaneously act at multiple stages of Anopheles life cycle presents a cost-effective opportunity. A further cost-effective approach would be the discovery of such insecticides from natural origin. Interestingly, essential oils present as potential sources of cost-effective and eco-friendly bioinsecticides. This study aimed to identify essential oil constituents (EOCs) with potential toxic effects against multiple stages of An. arabiensis life cycle. Five EOCs were assessed for inhibition of Anopheles egg hatching and ability to kill larvae, pupae and adult mosquitoes of An. arabiensis species. One of these EOCs, namely methyleugenol, exhibited potent Anopheles egg hatchability inhibition with an IC50 value of 0.51 ± 0.03 µM compared to propoxur (IC50: 5.13 ± 0.62 µM). Structure-activity relationship study revealed that methyleugenol and propoxur share a 1,2-dimethoxybenze moiety that may be responsible for the observed egg-hatchability inhibition. On the other hand, all five EOCs exhibited potent larvicidal activity with LC50 values less than 5 µM, with four of them; cis-nerolidol, trans-nerolidol, (-)-α-bisabolol, and farnesol, also possessing potent pupicidal effects (LC50 < 5 µM). Finally, all EOCs showed only moderate lethality against adult mosquitoes. This study reports for the first time, methyleugenol, (-)-α-bisabolol and farnesol as potent bioinsecticides against early life stages of An. arabiensis. This synchronized activity against Anopheles aquatic stages shows a prospect to integrate EOCs into existing adulticide-based vector control interventions.


Assuntos
Anopheles , Inseticidas , Malária , Óleos Voláteis , Animais , Feminino , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Propoxur/farmacologia , Farneseno Álcool/farmacologia , Mosquitos Vetores , Larva , Estágios do Ciclo de Vida
5.
Insects ; 14(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37103215

RESUMO

Culex pipiens is a mosquito species complex spread worldwide that poses a serious threat to human health as the primary vector of West Nile virus. Its control is mainly based on larvicidal applications with synthetic insecticides on mosquito breeding sites. However, the excessive use of synthetic larvicides may provoke mosquito resistance issues and negative side effects to the aquatic environment and human health. Plant-derived essential oils, including those from the Lamiaceae family, can be eco-friendly alternative larvicidal agents causing acute larval toxicity and/or growth inhibitory effects on the developmental stages of mosquitoes through different modes of action. In the current laboratory study, we evaluated the sublethal effects of carvacrol-rich oregano essential oil and pure carvacrol on Cx. pipiens biotype molestus, the autogenous member of the Cx. pipiens species complex, after the exposure of 3rd-4th instar larvae to LC50 concentrations. The short-term (24 h) larvicidal treatment with the sublethal concentrations of both tested materials exhibited an acute lethal effect on the exposed larvae as well as significant delayed mortality for surviving larvae and pupae. Larvicidal treatment with carvacrol reduced the longevity of the emerged males. In addition, the morphological abnormalities that were observed at the larval and pupal stage along with failed adult emergence indicate the potential growth inhibitory properties of the tested bioinsecticides. Our findings suggest that carvacrol and carvacrol-rich oregano oil are effective plant-based larvicides at doses lower than the acute lethal ones, thus promoting an environmentally friendly and more affordable perspective for their use against the WNV vector Cx. pipiens biotype molestus.

6.
Environ Sci Pollut Res Int ; 30(14): 40931-40941, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36626059

RESUMO

Mosquitoes are a threat worldwide since they are vectors of important pathogens and parasites such as malaria, dengue, yellow fever, and West Nile. The residual toxicity of several commercial mosquito larvicides was evaluated for the control of Culex pipiens pipiens under controlled laboratory and semi-field conditions during late spring and summer of 2013. The evaluation included six different active ingredient formulations, i.e., diflubenzuron Du-Dim), Bacillus thuringiensis var. israelensis (Bti) (Vectobac), spinosad (Mozkill), S-methoprene (Biopren), temephos (Abate), and polydimethylsiloxane (PDMS) (Aquatain), that are currently registered of and had been registered in the past for mosquito control. Under controlled laboratory conditions, the residual activity ranged from 1 week (S-methoprene) up to 2 months (spinosad, PDMS). Exposure of larvicides under semi-field conditions resulted in noticeable differences regarding their efficacy as compared to the laboratory bioassays. Exposure of S-methoprene, Bti, and spinosad, for up to 3 days, resulted in similar adult emergence to the controls. On the other hand, the residual efficacy of diflubenzuron, temephos, and PDMS ranged from 14 to 28 days, depending on the season of exposure. Longevity and fecundity of adults that had emerged from surviving larvae, in most of the cases tested, did not differ significantly from that of the controls. The results of the present study demonstrate the necessity of both field and laboratory studies to draw safe conclusions regarding the efficacy of larvicides against mosquitoes and the selection of the proper formulation for each application scenario. In addition, defining the seasonal variation in the residual toxicity of the tested formulations could be useful for improving mosquitos' management programs.


Assuntos
Bacillus thuringiensis , Culex , Culicidae , Diflubenzuron , Inseticidas , Animais , Temefós , Inseticidas/toxicidade , Metoprene , Mosquitos Vetores , Controle de Mosquitos/métodos , Larva
7.
Parasitol Int ; 92: 102686, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36174940

RESUMO

BACKGROUND: Anopheles stephensi was first recorded in the coastal area of Mannar District, Sri Lanka, in December 2016. Since then, this vector has been isolated from other districts in the Northern and Eastern Provinces of Sri Lanka. Chemical control is the main arm of vector control that can be used to reduce the vector densities within a short period. Thus, the present study aimed at evaluating the efficacy of using selected insecticides for the control of An. stephensi larvae. METHOD: The third and fourth instar larval stages of An. stephensi (F2 generation) of field mosquitoes that were caught using cattle baited net trap collections from Columbuthurai, Kurunagar, and Navanthurai areas in Jaffna District, Sri Lanka, were obtained from the laboratory colony established at Jaffna. Batches of 100 larvae were taken for experiments and introduced separately to a concentration series of temephos and novaluron (0.04-400 ppm). A control test was also performed at each setup without introducing insecticides. The mortality rates of An. stephensi larvae exposed to different concentrations of larvicides were recorded at 1, 24 and 48-h intervals. The experiment was replicated five times at individual concentrations for each selected chemical. Data were analyzed using the General Linear Model (GLM) and Probit analysis. RESULTS: The highest mortality rate (100%) at a 1-h exposure period was observed from temephos at >100 ppm. The mortality rates varied significantly for different concentrations and larvicides (p < 0.05). At 24-h of the exposure period, the 100% mortality of An. stephensi larvae were observed from both temephos and novaluron even at 0.04 ppm. CONCLUSION: Both temephos and novaluron reported 100% mortality rates in An. stephensi larvae at 1-h and 24-h exposure periods. Based on the findings, temephos and novaluron can be recommended as effective larvicides for chemical-based control of An. stephensi in Jaffna, Sri Lanka. Further, it is recommended to conduct a field-based study, where habitat types and water quality are highly heterogeneous and may affect the residual activity.


Assuntos
Anopheles , Inseticidas , Animais , Bovinos , Temefós/farmacologia , Inseticidas/farmacologia , Mosquitos Vetores , Sri Lanka , Larva
8.
Pest Manag Sci ; 79(1): 257-273, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36148914

RESUMO

BACKGROUND: Mosquito-borne pathogens constitute a major health problem worldwide. The extermination of the mosquito remains a significant issue in public health. Chemical insecticides have been used to control mosquitoes for decades. However, resistance has become a limiting factor for their control. The anthranilic diamide insecticides possess excellent insecticidal activities against Lepidoptera and its resistant strains by draining internal calcium stores on activating insect ryanodine receptors. However, the reports on the effect on mosquitoes are scarce and hence a series of novel anthranilic diamides comprising acyl thiourea substructure were synthesized and their insecticidal activities against three vector mosquito larvae namely, Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi were evaluated as per WHO protocol. Also investigated the morphological observations of treated larvae. RESULTS: Novel anthranilic diamides containing an acyl thiourea substructure were synthesized and structures were established by 1 H nuclear magnetic resonance (NMR), 13 C NMR, Fourier transform infrared (FTIR) and high-resolution mass spectrometry (HR-MS). Mosquito larvicidal activity of the title compounds 6-a-s revealed that compound 6-l exhibited marked larvicidal activities against C. quinquefasciatus and A. aegypti 3rd instar larvae with median lethal concentrations (LC50 ) values of 0.0044 mm and 0.0070 mm, respectively, for 48 hours of treatment. Compound 6-g exhibited larvicidal activity against An. stephensi with LC50 value of 0.0085 mm. Peculiar morphological alterations in the body of the treated larvae leading to death were observed on microscopic examination. CONCLUSION: Novel anthranilic diamides containing an acyl thiourea substructure were designed, synthesized and characterized. Their bioassay results demonstrated significant mosquito larvicidal activity with striking morphological alterations in the body, which should ensure forthcoming designs of highly active diamide derivatives as mosquito larvicides. © 2022 Society of Chemical Industry.


Assuntos
Diamida , Inseticidas , Diamida/farmacologia , Inseticidas/farmacologia , Tioureia/farmacologia
9.
Biomolecules ; 14(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38254633

RESUMO

Culex quinquefasciatus resistance to the binary (Bin) toxin, the major larvicidal component from Lysinibacillus sphaericus, is associated with mutations in the cqm1 gene, encoding the Bin-toxin receptor. Downregulation of the cqm1 transcript was found in the transcriptome of larvae resistant to the L. sphaericus IAB59 strain, which produces both the Bin toxin and a second binary toxin, Cry48Aa/Cry49Aa. Here, we investigated the transcription profiles of two other mosquito colonies having Bin resistance only. These confirmed the cqm1 downregulation and identified transcripts encoding the enzyme pantetheinase as the most downregulated mRNAs in both resistant colonies. Further quantification of these transcripts reinforced their strong downregulation in Bin-resistant larvae. Multiple genes were found encoding this enzyme in Cx. quinquefasciatus and a recombinant pantetheinase was then expressed in Escherichia coli and Sf9 cells, with its presence assessed in the midgut brush border membrane of susceptible larvae. The pantetheinase was expressed as a ~70 kDa protein, potentially membrane-bound, which does not seem to be significantly targeted by glycosylation. This is the first pantetheinase characterization in mosquitoes, and its remarkable downregulation might reflect features impacted by co-selection with the Bin-resistant phenotype or potential roles in the Bin-toxin mode of action that deserve to be investigated.


Assuntos
Amidoidrolases , Bacillaceae , Bacillus , Culex , Animais , Regulação para Baixo , Escherichia coli , Larva , Proteínas Ligadas por GPI
10.
Pak J Biol Sci ; 25(10): 911-921, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36404745

RESUMO

<b>Background and Objective:</b> Diseases caused by microbes vectored by mosquitoes are still a health problem in tropical countries today. DHF and Malaria are the two primary diseases vectored by mosquitoes, the morbidity and mortality rates have increased in low countries until now. However, the best way to control these two diseases is to control vectors, namely mosquitoes. Research has been conducted to determine the bioactive content and larvicidal activity of local plant extracts of North Sulawesi. <b>Materials and Methods:</b> The clove and trumpet flower samples were obtained from Minahasa, while the nutmeg samples were obtained from Sitaro Regency. Empirically, people use plant parts to repel mosquitoes. Extraction of plant simplicia was carried out by the maceration method. Qualitative and quantitative methods carried out the phytochemical content analysis. Qualitative analysis uses Harborne's (1996) method while qualitative analysis uses the UV Vis Spectrophotometer method. Toxicity tests were carried out on mosquito larvae developed in the laboratory. <b>Results:</b> The results showed that combining clove leaf extract, nutmeg flesh extract and trumpet flower synergistically increased the bioactive content. Flavonoids increased in the combination of extracts compared to partial extracts. The combination of extracts showed the highest toxicity to mosquito larvae (LC<sub>50</sub>: 22.541 mg L<sup>1</sup>), while the lowest was the partial extract of clove leaves with LC<sub>50</sub> (54.965 mg L<sup>1</sup>). <b>Conclusion:</b> The combination of extracts showed the best toxicity activity on mosquito larvae. Research on bioactive characteristics and toxicity in adult mosquitoes needs to be carried out in the future.


Assuntos
Culicidae , Inseticidas , Humanos , Animais , Indonésia , Inseticidas/análise , Mosquitos Vetores , Larva , Extratos Vegetais/farmacologia , Extratos Vegetais/química
11.
Exp Parasitol ; 242: 108392, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36191614

RESUMO

Mosquito management programs rely basically on the use of conventional synthetic larvicides. However, frequent applications and misuse of some synthetic insecticides have led to problems related to mosquito resistance development, harmful effects on human health and unacceptable environmental effects on non-target organisms. Recently, a growing number of phytochemicals has been tested as more eco-friendly larvicides against various mosquito species, exerting high efficacy with multiple modes of action. In the laboratory, we investigated for the first time the sublethal effects of oregano oil and its major compound carvacrol, against Aedes albopictus (Asian tiger mosquito), a mosquito of great medical importance. We determined the effects of short term (24h) exposure of 3rd- 4th larvae to LC50 concentrations on survival and development of survived larvae until adulthood, as well as on fecundity, fertility, longevity and wing length of emerged adults. Only half of 24h survived larvae from oregano oil and carvacrol treatment finally reached adulthood. Abnormal shapes of dead larvae and pupae, and failed adult emergence were also observed, indicating a potential growth inhibitory activity of the tested materials. No particular effects from exposure to larvicidal LC50 concentrations were recorded on life cycle parameters of successfully emerged adults. These findings suggest the tested oregano oil and carvacrol as sufficiently effective larvicides against Ae. albopictus at lower than the acutely toxic concentrations, promoting a more eco-friendly and less costly profile for these biopesticides.


Assuntos
Aedes , Culicidae , Inseticidas , Óleos Voláteis , Origanum , Animais , Humanos , Adulto , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Inseticidas/farmacologia , Inseticidas/química , Agentes de Controle Biológico/farmacologia , Larva
12.
Parasite Epidemiol Control ; 18: e00259, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35800035

RESUMO

Despite the substantial progress achieved in the search of nonchemical alternatives to insecticidal larviciding on mosquitoes, more work is still required to unravel the potency of viable substances in order to attend to several pest and disease problems. Insecticidal effectiveness of naphthalene and its combination with kerosene against the emergence of Ae. aegypti in Ika North East, LGA, Delta State, Nigeria was assessed. Immature stages of Ae. aegypti were collected and left to acclimatize for 6 h in standard laboratory conditions. Naphthalene measured in 2 g and its combinations with kerosene in 50:50 were emptied in 400 ml, 200 ml and 100 ml of water which resulted in 0.005%, 0.01% and 0.02% concentrations respectively. Water alone served as control for the experiment. Twenty third instar larvae and pupae were sorted into containers before exposure to treatments. Experiment was done in triplicates and observed for 10, 15, 20, 30, 40, 50, 60, and 80 min coinciding with WHO protocol for Aedes exposure. Mortality was highest in larvae exposed to 0.02% kerosene and naphthalene, and was also high in 0.02% naphthalene. Lowest mortality was recorded in pupae exposed to 0.005% of naphthalene. Significant differences in toxicity was recorded (p < 0.05). Mortality increased with time in larvae and pupae. Highest mortality in pupae and larvae was recorded in 0.02% kerosene and naphthalene mixture at 80 min post exposure time respectively. LC50 and LC95 of naphthalene exposed to Aedes larvae and pupae was between 0.002 and 0.018% and 0.021-0.051% respectively. Similarly, for naphthalene with kerosene was between 0.002 and 0.007%, and 0.015-0.035%. Pupae exposed to 0.005% naphthalene had more adult emergence than in others and the differences were significant (p < 0.05). Field trial is required with optimum concentrations.

13.
Crit Rev Toxicol ; 52(2): 113-124, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35608007

RESUMO

Temephos (O,O,O',O'-tetramethyl O,O'-thiodi-p-phenylene bis(phosphorothioate)) is a larvicide belonging to the family of organophosphate pesticides used for the control of different vectors of diseases, such as dengue, Zika, chikungunya, and dracunculiasis. The aim of this review was to discuss the available published information about temephos toxicokinetics and toxicity in mammals. Temephos is quickly absorbed in the gastrointestinal tract, distributed to all organs, and then it accumulates mainly in adipose tissue. It is metabolized by S-oxidation, oxidative desulfuration, and hydrolysis reactions, with the possible participation of cytochrome P450 (CYP). Temephos is mainly eliminated by feces, whereas some of its metabolites are eliminated by urine. The World Health Organization classifies it as class III: slightly dangerous with a NOAEL (no-observed adverse effect level) of 2.3 mg/kg/day for up to 90 days in rats, based on brain acetylcholinesterase (AChE) inhibition. A LOAEL (lowest observable adverse effect level) of 100 mg/kg/day for up to 44 days in rats was proposed based on cholinergic symptoms. However, some studies have shown that temephos causes toxic effects in mammals. The inhibition of the enzyme acetylcholinesterase (AChE) is one of its main demonstrated effects; however, this larvicide has also shown genotoxic effects and some adverse effects on male reproduction and fertility, as well as liver damage, even at low doses. We performed an extensive review through several databases of the literature about temephos toxicokinetics, and we recommend to revisit current assessment of temephos with the new available data.


Assuntos
Inseticidas , Temefós , Infecção por Zika virus , Zika virus , Acetilcolinesterase/metabolismo , Animais , Masculino , Mamíferos/metabolismo , Ratos , Zika virus/metabolismo
14.
Med Vet Entomol ; 36(2): 212-222, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388913

RESUMO

Malaria is among the leading causes of death in Uganda, and Anopheles gambiae sensu stricto (s.s.) is the predominant vector. Although current vector control interventions have greatly reduced the malaria burden, the disease persists. New interventions are needed in order to eradicate them. Evaluation of new tools will require the availability of well-characterized test vector populations. Juvenile An. gambiae s.s. from Kibbuye and Kayonjo-derived populations were characterized under semi-field and laboratory conditions, given that various vector traits, including abundance and fitness are dependent on development profiles at this life stage. Ten replicates comprising 30 first instar larvae each were profiled for various life-history attributes (egg hatching, larval development time, larval survivorship, pupal weight and pupation rate). All parameters were similar for the two sites under laboratory conditions. However, the similarities or differences between field and laboratory development were parameter-specific. Whereas, larval survivorship and pupal weight were similar across seasons and laboratory in colonies from both sites, in the semi-field settings, pupation rate and larval survivorship differed between seasons in both sites. In addition, the average larval development time during the wet season was longer than that of the laboratory for both sites. Availability of mirror field sites is important for future tool evaluations.


Assuntos
Anopheles , Malária , Animais , Larva , Malária/prevenção & controle , Malária/veterinária , Mosquitos Vetores , Pupa , Uganda
15.
Parasit Vectors ; 14(1): 445, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479606

RESUMO

BACKGROUND: Larvicides are typically applied to fixed and findable mosquito breeding sites, such as fish farming ponds used in commercial aquaculture, to kill immature forms and thereby reduce the size of adult malaria vector populations. However, there is little evidence suggesting that larviciding may suppress community-wide malaria transmission outside Africa. Here, we tested whether the biological larvicide VectoMax FG applied at monthly intervals to fish farming ponds can reduce malaria incidence in Amazonian Brazil. METHODS: This study was carried out in Vila Assis Brasil (VAB; population 1700), a peri-urban malaria hotspot in northwestern Brazil with a baseline annual parasite incidence of 553 malaria cases per 1000 inhabitants. The intervention consisted of monthly treatments with 20 kg/ha of VectoMax FG of all water-filled fish ponds in VAB (n ranging between 167 and 170) with a surface area between 20 and 8000 m2, using knapsack power mistblowers. We used single-group interrupted time-series analysis to compare monthly larval density measurements in fish ponds during a 14-month pre-intervention period (September 2017-October 2018), with measurements made during November 2018-October 2019 and shortly after the 12-month intervention (November 2019). We used interrupted time-series analysis with a comparison group to contrast the malaria incidence trends in VAB and nearby nonintervention localities before and during the intervention. RESULTS: Average larval densities decreased tenfold in treated fish farming ponds, from 0.467 (95% confidence interval [CI], 0.444-0.490) anopheline larvae per dip pre-intervention (September 2017-October 2018) to 0.046 (95% CI, 0.041-0.051) larvae per dip during (November 2018-October 2019) and shortly after the intervention (November 2019). Average malaria incidence rates decreased by 0.08 (95% CI, 0.04-0.11) cases per 100 person-months (P < 0.0001) during the intervention in VAB and remained nearly unchanged in comparison localities. We estimate that the intervention averted 24.5 (95% CI, 6.2-42.8) malaria cases in VAB between January and December 2019. CONCLUSIONS: Regular larviciding is associated with a dramatic decrease in larval density and a modest but significant decrease in community-wide malaria incidence. Larviciding may provide a valuable complementary vector control strategy in commercial aquaculture settings across the Amazon.


Assuntos
Anopheles/efeitos dos fármacos , Aquicultura/métodos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , Animais , Anopheles/parasitologia , Brasil/epidemiologia , Pesqueiros , Humanos , Incidência , Malária/epidemiologia , Malária/transmissão , Mosquitos Vetores/parasitologia , Lagoas/parasitologia , Fatores de Tempo
16.
Front Plant Sci ; 12: 685864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149785

RESUMO

The continuous and indiscriminate use of insecticides has been responsible for the emergence of insecticide resistant vector insect populations, especially in Aedes aegypti. Thus, it is urgent to find natural insecticide compounds with novel mode of action for vector control. The goal of this study was to investigate the larvicidal activity of essential oils (EOs) from Piper species against A. aegypti characterized as resistant and susceptible strains to pyrethroids. The EOs from leaves of 10 Piper species were submitted to the evaluation of larvicidal activity in populations of A. aegypti in agreement with the (World Health Organization, 2005) guidelines. The resistance of the strains characterized by determining the lethal concentrations (LCs) with the insecticide deltamethrin (positive control). The major compounds of the EOs from Piper species was identified by GC-MS. The EOs from Piper aduncum, P. marginatum, P. gaudichaudianum, P. crassinervium, and P. arboreum showed activity of up to 90% lethality at 100 ppm (concentration for screening). The activities of the EOs from these 6 species showed similar LCs in both susceptible strain (Rockefeller) and resistant strains (Pampulha and Venda Nova) to pyrethroids. The major compounds identified in the most active EO were available commercially and included ß-Asarone, (E)-Anethole, (E)-ß-Caryophyllene, γ-Terpinene, p-Cymene, Limonene, α-Pinene, and ß-Pinene. Dillapiole was purified by from EO of P. aduncum. The phenylpropanoids [Dillapiole, (E)-Anethole and ß-Asarone] and monoterpenes (γ-Terpinene, p-Cymene, Limonene, α-Pinene, and ß-Pinene) showed larvicidal activity with mortality between 90 and 100% and could account for the toxicity of these EOs, but the sesquiterpene (E)-ß-Caryophyllene, an abundant component in the EOs of P. hemmendorffii and P. crassinervium, did not show activity on the three populations of A. aegypti larvae at a concentration of 100 ppm. These results indicate that Piper's EOs should be further evaluated as a potential larvicide, against strains resistant to currently used pesticides, and the identification of phenylpropanoids and monoterpenes as the active compounds open the possibility to study their mechanism of action.

17.
J Am Mosq Control Assoc ; 37(2): 61-67, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34184049

RESUMO

Gravid traps that collect eggs or adult mosquitoes use color, size, or volume as well as water or plant infusions as attractants. Biorational larvicides have been used to prevent these devices from producing adult mosquitoes within the traps. Results from field assays on the use of several biorational larvicides for various mosquito species have provided mixed results in terms of increased, neutral, or reduced attraction. We investigated the use of Bacillus thuringiensis var. israelensis, spinosad, and novaluron in field assays in Puerto Rico to evaluate the behavioral response of Aedes aegypti and Culex spp. to autocidal gravid ovitraps (AGO traps). The purpose of the study was to increase the safety of these traps by preventing accidental release of adult mosquitoes when traps are opened or damaged. We also investigated whether trap color (blue, green, terracotta) that may be more amenable for use by residents in their properties induced a similar attraction response to the original black trap color. We found that the use of biorational larvicides did not significantly change the behavioral attraction of these mosquito species to AGO traps. For Ae. aegypti, green traps yielded the lowest captures while black, terracotta, and blue produced similar higher yields. Culex spp. in black traps showed significantly higher captures compared with other colors. These results suggest that black, terracotta, or blue AGO traps can be used for the surveillance and control of Ae. aegypti.


Assuntos
Aedes , Culex , Animais , Controle de Mosquitos , Porto Rico , Fosfatase Ácida Resistente a Tartarato
18.
Pest Manag Sci ; 77(2): 659-665, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33034953

RESUMO

BACKGROUND: Extracts of the invasive weed Parthenium hysterophorus (Asteraceae) have been shown to possess larvicidal activity against a wide range of disease vectors. However, the phytochemicals responsible for the larvicidal activity from this plant remain unidentified. Here, we isolated the major sesquiterpene lactone, parthenin (1) from the plant and synthesized two derivatives [ethylene glycol (2) and azide (3) derivatives] targeting the α,ß-unsaturated carbonyl group, previously known to account for its biological activity such as toxicity towards cells and microorganism. All three compounds were screened for larvicidal activity against the African malaria vector Anopheles gambiae. RESULTS: The larval mortality of ethylene glycol derivative (2) and 2α-azidocoronopilin (3) were approximately two-four-fold higher than that of parthenin (1) and neem oil with LC50 values of 37 and 66 mg L-1 , respectively. Parthenin (1) and the positive control, neem oil, had comparable median lethal concentration (LC50 ) values of 154 and 121 mg L-1 , respectively. In assays with binary combinations of the three compounds, larvicidal activity followed the order: parthenin (1) + 2α-azidocoronopilin (3) (LC50 = 14 mg L-1 ) > parthenin (1) + ethylene glycol derivative (2) (LC50 = 109 mg L-1 ), > blend of 2α-azidocoronopilin (3) and ethylene glycol derivative (2) (LC50 = 200 mg L-1 ). CONCLUSION: Structural modification of parthenin (1) through addition of hydroxyl groups increases its larvicidal effects. These findings advance the use of structural modification approach in the development of lead chemical molecules for potential exploitation in larval source management.


Assuntos
Anopheles , Asteraceae , Inseticidas , Malária , Sesquiterpenos , Animais , Inseticidas/farmacologia , Lactonas , Larva , Mosquitos Vetores , Compostos Fitoquímicos , Extratos Vegetais , Plantas Daninhas , Sesquiterpenos/farmacologia
19.
Insects ; 11(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126682

RESUMO

Negative impacts on the environment from the continuous use of synthetic insecticides against mosquitoes has driven research towards more ecofriendly products. Phytochemicals, classified as low-risk substances, have been recognized as potential larvicides of mosquitoes; however, problems related to water solubility and stability are limiting factors for their use in mosquito control programs in the field. In this context, many researchers have focused on formulating essential oils in nanoemulsions, exploiting innovative nanotechnology. In the current study, we prepared 4 (R)-(+)-limonene oil-in-water nanoemulsions using low and high energy methods, and we evaluated their physicochemical characteristics (e.g., viscosity, stability, mean droplet diameter, polydispersity index) and their bioactivity against larvae of two mosquito species of great medical importance, namely, Cx. pipiens molestus and Ae. albopictus. According to the dose-response bioassays with the limonene-based nanoemulsions and pure limonene (dissolved in organic solvent), the tested nanoformulations improved the activity of limonene against Ae. albopictus larvae, while the performance of limonene was either the same or better than limonene against Cx. pipiens molestus, depending on the applied system. Overall, we achieved the production of limonene-based delivery nanosystems, with sufficient lethal properties against mosquito larvae to consider them promising larvicidal formulations applicable to mosquito breeding sites.

20.
Acta Trop ; 212: 105705, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956639

RESUMO

This review focused on the toxicity of essential oils and their constituents against Aedes aegypti L. (Diptera, Culicidae) larvae, a key vector of important arboviral diseases, such as dengue, chikungunya, zika, and yellow fever. This review is based on original articles obtained by searching major databases in the last six years. Our literature review shows that 337 essential oils from 225 plant species have been tested for larvicidal bioactivity. More than 60% of these essential oils were considered active (LC50<100 µg/mL). Most species belong to the families Lamiaceae (19.3%), Lauraceae (9.9%), and Myrtaceae (9.4%). The plants studied for their larvicidal activity against A. aegypti were mainly collected in India and Brazil (30 and 20%, respectively) and the parts of the plants most used were the leaves. Less than 10% of essential oils were evaluated for toxicity against non-target organisms and with the aim to demonstrate safe use. The most used plant parts are leaves and the main compounds of essential oils were described. The most active essential oils are rich in sesquiterpene hydrocarbons, oxygenated sesquiterpenes, and monoterpene hydrocarbons. Here, factors affecting bioactivity (chemical composition, plant parts, and harvesting site) of essential oils and their constituents, as well as safety to non-target organisms are discussed. Essential oils have considerable potential against A. aegypti. This review shows that essential oils might be used to control arboviruses, and further studies on safety and formulations for application in the field should be performed.


Assuntos
Aedes/efeitos dos fármacos , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Animais , Larva/efeitos dos fármacos , Mosquitos Vetores , Óleos Voláteis/análise , Sesquiterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...